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Abstract

A method is presented to formulate a novel hybrid finite element to obtain accurate distributions of mechanical and

electrical quantities around a hole in plane piezoelectric mediums. The complex variable method is used in conjunction

with Reissner’s variational principle to formulate a hybrid special element with an elliptical hole. Detailed derivations

are given and numerical examples are performed to demonstrate the accuracy and efficiency of the novel special ele-

ment. Accurate results around the hole boundary are obtained for infinite and finite piezoelectric medium by using

proposed special element.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

PZT materials are widely used as sensors/actuators in smart structures due to their fast response and low

energy consumption. There are a lot of articles dealing with the damages (cracks) as well as inclusions of

PZT material itself by using analytical approaches (See, for example, a review paper by Chen and Yu, 1999;

papers by Sosa, 1991, 1992; Chung and Ting, 1996; Lu and Williams, 1998; Deng and Wang, 2002). As is
well known that analytical solutions can be obtained only for the simple cases, therefore, numerical

methods, such as the finite element method, boundary element method, and/or the coupled FEM–BEM,

should be resorted for obtaining solutions in general complicated cases. Details on the modeling of pie-

zoelectric materials and smart structures by conventional finite elements and boundary element method

may be referred, for example, papers by Benjeddou (2000), Lu and Maharenholtz (1994), and Denda and

Lua (1999).
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It is also well known, however, that it is costly to model a crack or hole by using ordinary finite elements.

Special elements employing hybrid formulations have been succeeded for analyzing crack problems in plane

elasticity (Tong et al., 1977; Zienkiewicz and Taylor, 2000), laminated plates with an elliptical hole (Chen,

1994; Zhan et al., 2003), and problems of cracks at bimaterial interfaces (Lee and Gao, 1995; Sze and
Wang, 2000; Chen et al., 2001). It is demonstrated that hybrid finite elements have the advantages of high

accuracy for hole and crack problems. Recently, the finite element method for ordinary materials (Sze and

Wang, 2000) has been extended to piezoelectric materials for computing edge singularities (Sze et al., 2001).

In this paper, a special hybrid finite element with an elliptical hole is developed herein based on the

Reissner’s variational principle by EerNisse (1983). Complex variable method is used to obtain the

approximate solutions of the stresses, displacements, and electric displacements within the element domain.

In other words, the assumed stresses, displacements, and electric displacements for the special hybrid

element satisfy the governing differential equations and compatibility equations in advance. In this way,
highly efficient novel special elements can be formulated to model the piezoelectric medium with a hole or

crack. It should be mentioned the more general variational principle of piezoelectricity with six kinds of

independent variables given by Lu and Maharenholtz (1994) could be used for developing various special

finite or boundary elements.

Numerical examples with known analytical solutions by Sosa (1991) are performed to demonstrate the

accuracy and efficiency of the novel special elements. Accurate results around the hole boundary are ob-

tained for infinite and finite piezoelectric mediums by using only one special element. The behaviors of finite

plates with an elliptical hole with semi-axes of a and b under combined mechanical and electrical loadings
are then studied. It is found that the relationship between the logarithm concentration factors of tangential

stress, electrical displacement, and electrical field at notch tip and logarithm b=a ratio is fairly linear under

certain loading cases.
2. Basic formulations

Using the complex variable formulation as described by Sosa (1991), the stress functions Uðx; yÞ, and the

induction function Wðx; yÞ for piezoelectric media with defects in two dimensions can be expressed by using

the following two complex functions, namely,
Uðx; yÞ ¼ 2Re
X3
k¼1

UkðzkÞ; Wðx; yÞ ¼ 2Re
X3
k¼1

kk
dUkðzkÞ
dzk

ð1a;bÞ
where the symbol Re represents the real part of a complex function, kk and the complex variable zk are
defined as
zk ¼ xþ lky ð2aÞ

kkðlkÞ ¼ � bðlkÞ
dðlkÞ ¼ � ðb21 þ b13Þl2

k þ b22
d11l2

k þ d22

; dðlkÞ 6¼ 0 ð2bÞ
The complex variable lk (k ¼ 1, 2, 3) is the roots of the following equation:
a11d11l
6 þ ða11d22 þ 2a12d11 þ a33d11 þ b221 þ b213 þ 2b21b13Þl4 þ ða22d11 þ 2a12d22 þ a33d22

þ 2b21b22 þ 2b22b13Þl2 þ ða22d22 þ b222Þ ¼ 0 ð3Þ
For transversely isotropic (x1x2 plane) piezoelectric materials with poling direction in the x3 direction and

for plane strain condition (e22 ¼ e32 ¼ e12 ¼ E2 ¼ 0), the remaining notations appeared in Eqs. (2b) and (3)
can be found in the work of Sosa (1991).
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Consider the case of plane strain. Now let the y be the poling direction and introduce the following

notations, Uk, U0
k ðk ¼ 1; 2; 3Þ, namely,
UkðZkÞ ¼ U 0
k ¼

dUk
dzk

; U0
k ¼

dUk

dzk
ð4a;bÞ
The stress field, displacement field and electrical field can be obtained once the functions in Eq. (4a,b) are

known.

Consider a piezoelectric plate containing an elliptical hole with semi-axes of a and b. To apply the hole-

boundary conditions conveniently, conformal transformations proposed by Lekhnitskii (1981), Eq. (5), are

performed to map the exterior of three ellipses contained in the Zj plane onto the exterior of the unit circle

located in the nj planes,
Zj ¼
a� iljb

2
nj þ

aþ iljb

2
n�1
j ðj ¼ 1; 2; 3Þ ð5Þ
The inverse mapping nj is given by
nj ¼
Zj �

ffiffiffiffiffi
Zj

p 2 � ða� iljbÞðaþ iljbÞ
a� iljb

ðj ¼ 1; 2; 3Þ ð6Þ
In terms of the variable nk, the stress field, displacement field and electrical field can be written as
rxx ¼ 2Re
X3
k¼1

l2
k/

0
kðnkÞ=Z 0

kðnkÞ; ryy ¼ 2Re
X3
k¼1

/0
kðnkÞZ 0

kðnkÞ;

rxy ¼ �2Re
X3
k¼1

lk/
0
kðnkÞ=Z 0

kðnkÞ; u ¼ 2Re
X3
k¼1

pk/kðnkÞ þ x0y þ u0;

v ¼ 2Re
X3
k¼1

qk/kðnkÞ � x0xþ v0 ð7a–eÞ

D1 ¼ 2Re
X3
k¼1

kklk/
0
kðnkÞ=Z 0

kðnkÞ; D2 ¼ �2Re
X3
k¼1

kk/
0
kðnkÞ=Z 0

kðnkÞ ð7f ; gÞ

E1 ¼ 2Re
X3
k¼1

ðb13 þ d11kkÞlkU0
kðnkÞ=Z 0ðnkÞ

E2 ¼ �2Re
X3
k¼1

ðb21l2
k þ b22 þ d22kkÞU0

kðnkÞ=Z 0ðnkÞ
ð7h; iÞ

u ¼ �2Re
X3
k¼1

ðb13 þ d11kkÞlkUkðnkÞ þ u0 ð7jÞ
where
Z 0
kðnkÞ ¼

dZk
dnk

¼ a� ilkb
2

� aþ ilkb
2

n�2
k ð8Þ
All other symbols appeared in Eq. (7) can be found in the work of Sosa (1991).
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For the D–P condition (traction-free and charge-free) along the cavity boundary, one has
Re
X3
k¼1

/kðnkÞ ¼ 0; Re
X3
k¼1

lk/kðnkÞ ¼ 0; Re
X3
k¼1

kk/kðxikÞ ¼ 0 ð9a–cÞ
or in matrix notation:
1 1 1
�l1 �l2 �l3
�k1

�k2
�k3

0
@

1
A �/1

�/2
�/3

8<
:

9=
; ¼ �

1 1 1
l1 l2 l3

k1 k2 k3

0
@

1
A /1

/2

/3

8<
:

9=
; ð10Þ
Eq. (10) can be written as
�/1
�/2
�/3

8<
:

9=
; ¼

E11 E12 E13

E21 E22 E23

E31 E32 E33

0
@

1
A /1

/2

/3

8<
:

9=
; ð11Þ
Generally speaking, it is impossible to find a closed form solutions for /kðnkÞ for arbitrary boundary

conditions. A finite series formulation is commonly adopted, namely,
/1ðn1Þ ¼
XM
j¼�N

Ajn
j
1; /2ðn2Þ ¼

XM
j¼�N

Bjn
j
2; /3ðn3Þ ¼

XM
j¼�N

Cjn
j
3 ð12a–cÞ
where Aj, Bj, Cj are complex coefficients to be determined by the boundary conditions.

Without loss of the generality, set M equal N . Note that terms with j ¼ 0 in Eq. (12a–c) contribute no

stresses and electric displacements and thus are discarded. After satisfying the boundary conditions, Eq.

(9a–c), on the elliptical hole boundary and note the fact of that �njk ¼ n�j
k on the unit circle, the total number

of independent coefficients is reduced to half. In other words, the total number of independent coefficients

in Eq. (12) is now 6N .
3. Reissner’s variational principle

Following EerNisse (1983), Reissner’s Variational Functional can be expressed as
Y
R
¼
Z

X
ui;jrij �

1

2
sDijklrijrkl � uifi þ u;iDi þ

1

2
br
ijDiDj þ uqb � gkijrijDk

� �
dvþ

Z
Su

ð~ui

� uiÞrijnjdsþ
Z
Su

ð~u � uÞDjnjds�
Z
Sr

uieTidsþ Z
Sx

u~qsds ð13Þ
where sDijkl, br
ij, gkij are the compliance tensor of the material measured at zero electric displacement, the

dielectric impermeability tensor measured at zero stress, and the piezoelectric tensor; ui, rij, u, Di are the
displacement vector, stress tensor, the electric potential, and electric displacement vector, fi, qb are the body
force vector and the body charge vector, respectively. The quantities with symbol ~	 represent the known

quantity. And Su, Sr, Su, Sx represents the boundary with given displacement, traction forces, electric

potential, and the electric displacement, respectively.

The special element matrices are to be formulated from the element’s functional
QE

R by assuming ui, rij,
u, Di in the element domain and ~ui, ~u along the element outer boundary. Theoretically all these quantities

can be assumed independently, however, they are to be chosen that the governing differential equations and

compatibility equations be satisfied in advance. Thus, the functional defined in the element domain is
simplified as
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YE

R
¼
Z
SE

~uirijnjds�
1

2

Z
SE

uirijnjdsþ
Z
SE

~uDjnjds�
1

2

Z
SE

uDjnjds�
Z
Sr

uieTidsþ Z
Sx

u~qsds ð14Þ
Note that the components of body force vector and the body charge vector fi, qb are assumed zero in

writing Eq. (14) and SE is the element boundary. The last two integrals on the right-hand side of Eq. (14)

should be dropped if the element is surrounded by special or conventional elements, the case considered in

the following derivations. The quantities with symbol ~	 represent the quantities only on the element outer

boundary, since the D–P condition along the hole boundary has been satisfied in advance. It should be

emphasized that only boundary integrals are involved in Eq. (14), different from the sub-region mixed
functional (Zhao and Shan, 1991). Detail discussions may be referred to the book written by Zienkiewicz

and Taylor (2000).

For convenience, introduce following notations:
r ¼

rxx
ryy
rxy
Dx
Dy

8>>>><
>>>>:

9>>>>=
>>>>;
; u ¼

u
v
u

8<
:

9=
;; t ¼

tx
ty
q

8<
:

9=
;; b ¼

b1

b2

	
	
bn

8>>>><
>>>>:

9>>>>=
>>>>;
; d ¼

u1
v1
u1

	
um
vm
um

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

ð15a–eÞ
where n is the number of unknowns, and m is the number of nodal points of the special element. Assuming

ui, rij, u, Di in the element domain yields
r ¼ Sb; u ¼ Ub ð16a;bÞ
where elements containing in matrices S and U are interpolation functions to be defined in Section 4. Then,

one can evaluate t at the element boundary, namely,
t ¼ Nr ¼ NSb ð17Þ

Let nx, ny be the components of the unit normal to the element external boundary, thus matrix N in Eq. (17)

can be expressed as
N ¼
nx 0 ny 0 0

0 ny nx 0 0

0 0 0 nx ny

2
4

3
5 ð18Þ
The external boundary displacement vector and electric potential, ~u, is independently assumed in terms

of the nodal displacements and electric potentials, namely,
~u ¼ Ld ð19Þ

where elements of matrix L are the interpolation functions defined only along the element external

boundary. To be jointed with special or conventional elements, the interpolation functions for the special

element developed herein are chosen to be displacement shape functions of the adjacent conventional

elements.

Neglect the body forces, body charges, and the boundary loadings, the functional for the special element

can be symbolically written as
YE

R
¼ bT

Z
Se

ðNSÞTLdsÞ
� �

d � 1

2
bT

Z
Se

ðNSÞTUds
� �

b ¼ bTGd � 1

2
bTHb ð20Þ
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where
G ¼
Z
Se

ðNSÞTLds; H ¼ 1

2

Z
Se

½ðNSÞTUþUTðNSÞ�ds ð21a;bÞ
Since b and d are assumed independently, set o
QE

R =ob ¼ 0 yields
Gd �Hb ¼ 0 ð22Þ

or
b ¼ H�1Gd ð23Þ

Substituting Eq. (23) into Eq. (20)
YE

R
¼ 1

2
dTGTH�1Gd ¼ 1

2
dTKd ð24Þ

Kd ¼ o
YE

R
=od ¼ ðGTH�1GÞd ð25Þ
Thus, the stiffness matrix for the special element is obtained. The K in Eq. (25) could be viewed as a

‘‘standard stiffness matrix’’ (Zienkiewicz and Taylor, 2000). As was demonstrated by Chen (1994), the

special element developed in this way could be conveniently used to join other variationally compatible

elements in the stress analyses of laminated plates, such as the conventional finite elements or the special

elements themselves.
4. Eight-node special hybrid finite element

As an example, an eight-node special hybrid finite element, schematically shown in Fig. 1, is considered.

Elements with different nodes (e.g. 4, 16, or more nodes) could be formulated in a similar way without any

difficulty (Lee and Gao, 1995). An elliptical hole is located at the element center. Each node has three

degrees of freedom (DOFs). For example, at node 1, the three DOFs are u1, v1, u1. The poling direction is

assumed in the y-direction. The lengths of the semi-axes of the hole are a and b. The side lengths of the
element are denoted by L13, L35, L57, L71, respectively.

For developing the special element, Eqs. (11) and (12) are used to determine the stress and electric

displacement within the element, namely, to obtain Eq. (16a). Set N ¼ 4, then b is
bT ¼ fAx1;Ay1; . . . ;Ax4;Ay4;Bx1;By1; . . . ;Bx4;By4;Cx1;Cy1; . . . ;Cx4;Cy4g ð26Þ
y 

Ω
 

x

1 2 
3 

4

5 
6 

7 

8 

Fig. 1. An eight-node element with a center elliptical hole.
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where elements of vector b are parts of the complex coefficients in Eq. (12) and defined by
Ak ¼ Axk þ iAyk; Bk ¼ Bxk þ iByk; Ck ¼ Cxk þ iCyk ðk ¼ 1; 2; 3; 4; i ¼
ffiffiffiffiffiffiffi
�1

p
Þ ð27a–cÞ
It can be seen that there are totally 24 unknowns (n ¼ 24) in the b matrix and the number of unknowns is

equal to the number of the degrees of freedoms of the element. It should be pointed out that n could be set

to other numbers greater than 3m� 3 (3m is the total number of degrees of freedom of the element),

however, it is recommended that the number of unknowns be equal to the number of the degrees of

freedoms of the special element. Experience shows that a four-node special element with N ¼ 2 could yield

similar accurate results for the infinite plate problems considered later. Since the accuracy of the special
element depends largely on how accurate of the displacements and electric potential on the special element

boundaries, either more nodes (need more terms in Eq. (12)) or finer meshes (achieved by more special

elements) are required for the special element to be used with other elements.

Substituting Eq. (12a–c) into Eq. (15a–e) yields the matrix S appeared in Eq. (16a) and matrix U in Eq.

(16b). The traction vector t in Eq. (15c) can then be computed by using Eqs. (17) and (18). Since ~u is as-

sumed along the element outer boundary only, interpolation along the element sides could be linear or

quadratic depending on the type of displacement shape functions of the adjacent elements (Lee and Gao,

1995). The shape functions are to be chosen in parabolic forms in the following derivations. For example,
along element side 1–3, matrix L in Eq. (19) is defined as
L ¼
N1 0 0 N2 0 0 N3 0 0 0 . . . 0
0 N1 0 0 N2 0 0 N3 0 0 . . . 0
0 0 N1 0 0 N2 0 0 N3 0 . . . 0|fflffl{zfflffl}

15

2
664

3
775 ð28aÞ
Along element side 3–5, matrix L in Eq. (19) is defined as
L ¼
0 . . . 0 N1 0 0 N2 0 0 N3 0 0 0 . . . 0
0 . . . 0 0 N1 0 0 N2 0 0 N3 0 0 . . . 0
0 . . . 0|fflffl{zfflffl}

6

0 0 N1 0 0 N2 0 0 N3 0 . . . 0|fflffl{zfflffl}
9

2
664

3
775 ð28bÞ
Along element side 5–7, matrix L in Eq. (19) is defined as
L ¼
0 . . . 0 N1 0 0 N2 0 0 N3 0 0 0 . . . 0
0 . . . 0 0 N1 0 0 N2 0 0 N3 0 0 . . . 0
0 . . . 0|fflffl{zfflffl}

12

0 0 N1 0 0 N2 0 0 N3 0 . . . 0|fflffl{zfflffl}
3

2
664

3
775 ð28cÞ
Along element side 7–1, matrix L in Eq. (19) is defined as
L ¼
N3 0 0 0 . . . 0 N1 0 0 N2 0 0

0 N3 0 0 . . . 0 0 N1 0 0 N2 0

0 0 N3 0 . . . 0|fflffl{zfflffl}
15

0 0 N1 0 0 N2

2
664

3
775 ð28dÞ
where
N1 ¼ ðs� 1Þð2s� 1Þ
N2 ¼ 4sð1� sÞ s 2 ½0; 1�
N3 ¼ sð2s� 1Þ

ð29Þ
where s ¼ S=Lij, S is the arc variable along the element side, and Lij is the length of the element side ij.
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To obtain the roots lk, Eq. (3) is rewritten as
l6 þ ½ða11d22 þ 2a12d11 þ a33d11 þ b221 þ b213 þ 2b21b13Þ=ða11d11Þ�l4 þ ½ða22d11 þ 2a12d22 þ a33d22

þ 2b21b22 þ 2b22b13Þ=ða11d11Þ�l2 þ ða22d22 þ b222Þ=ða11d11Þ ¼ 0 ð30Þ
or
l6 þ c1l4 þ c2l2 þ c3 ¼ 0 ð31Þ
Then lk can be conveniently obtained by solving the eigenvalues of the following matrix P.
P ¼

0 �c1 0 �c2 0 �c3
1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0

2
6666664

3
7777775

ð32Þ
Thus, the stiffness matrix for the special element can be obtained by using Eq. (25).
5. Numerical examples

A computer program is written and several examples with known solutions are studied to test the

proposed element. Gaussian quadrature is adopted to conduct the boundary integrations. The minimum

number of Gaussian quadrature points is three. The material is assumed a PZT-4 ceramic. Reduced

material constants provided by Sosa (1991) are
a11 ¼ 8:205� 10�12 m2=N; a12 ¼ �3:144� 10�12 m2=N;

a22 ¼ 7:495� 10�12 m2=N; a33 ¼ 19:3� 10�12 m2=N;

b21 ¼ �16:12� 10�3 m2=C; b22 ¼ 23:96� 10�3 m2=C; b13 ¼ 39:4� 10�3 m2=C;

d11 ¼ 7:66� 107 V2=N; d22 ¼ 9:82� 107 V2=N

ð33Þ
It should be pointed out that one should be very careful in programming, since the order of material

constants above are quite different which may result numerical instability or inaccuracy. The difficulty can

easily be overcome, however, by adopting the modified units in the analysis (Sze et al., 2001). Attention

should also be paid the plus–minus sign ± in Eq. (6) during numerical calculations. To ensure the accuracy,

analytical data of Sosa (1991) in Figs. 3–9 have been recalculated.

Example 1. Consider the elliptical cavity shown in Fig. 2 with boundary conditions given by Eq. (34),

namely,
rijnj ¼ 0; Dini ¼ 0 ði; j ¼ 1; 2Þ ð34Þ
For comparisons, far field mechanical loading in the x direction, different from the one shown in Fig. 2,

is considered, namely, r1
xx ¼ r0. And the maximum stress at y ¼ b is to be determined by the special finite

element developed herein.

In the finite analysis, one special element proposed is used. For the infinite piezoelectric medium, set

H ¼ W ¼ 50 mm, a=H ¼ 0:02 if aP b or b=H ¼ 0:02 if a6 b. The numerical results are listed in Table 1 for
several a=b ratios. The results in Table 1 under the title ‘‘Elastic’’ is obtained by neglecting the terms

containing the electrical variable. In other words, a purely anisotropic problem is solved. The data by the
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Fig. 2. Elliptical hole in an infinite or finite piezoelectric medium.

Table 1

Values of rxx=r0 at x ¼ 0, y ¼ b

a=b Elastic Electroelastic

Theory (Sosa, 1991) Present (FEM) % Difference Theory (Sosa, 1991) Present % Difference

3 1.6222 1.623 0.06 1.743 1.742 )0.06
1 2.870 2.870 0.00 3.230 3.229 )0.03
1/3 6.610 6.610 0.00 7.700 7.682 )0.23
1/10 19.7 19.70 0.00 23.26 23.27 +0.03
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finite element method are obtained by using the eight-node special hybrid stress element proposed by Zhan
et al. (2003), a special case of the current element by taking out all electrical quantities. It can be seen that

numerical results are compared very well with the analytical solutions for both ‘‘Elastic’’ and ‘‘Electro-

elastic’’ cases. The efficiency of the proposed special element is demonstrated. It can be seen again by

comparing the data listed in Table 1 that the differences between two theories are by no means negligible,

pointed out earlier by Sosa (1991), thus the Electro-elastic theory should be used.
Example 2. Consider next an infinite piezoelectric medium with a circular hole (radius of a) under two

different loadings, namely, either r1
2 ¼ r0 or D1

2 ¼ D0. The boundary conditions around the circular hole
(r ¼ a) are rr ¼ srh ¼ Dr ¼ 0 if polar coordinates are used.

The finite element results for the stress rh, electric displacement Dh, electric field Er and Eh normalized

with respect to the far field applied stress r1
2 ¼ r0 are shown in Figs. 3–5 (symbols), respectively. In the

calculations, H ¼ W ¼ 50 mm, a=H ¼ 0:02, to simulate the infinite piezoelectric medium. Only one eight-

node special hybrid finite element is used in the analysis. To obtain the same accurate results for this

problem, Deng and Wang (2002) used 1120 eight-node ordinary isoparametric elements to model a quarter

of the plate. All numerical results are well compared with the analytical solutions (solid lines) given by Sosa

(1991). The maximum values of rh occur at h ¼ 0�, 180�, and the maximum values of Dh occur at h ¼ 65�,
115�, agrees well with Sosa’s theoretical results h ¼ 65�, 114�.



Fig. 3. Variation of Dh with h on the circular boundary under remote mechanical loading.

Fig. 4. Variation of rh with h on the circular boundary under remote mechanical loading.

Fig. 5. Variations of Er and Eh with h on the circular boundary under remote mechanical loading.
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The finite element results for the stress rh, electric displacement Dh, electric field Er and Eh normalized
with respect to the far field applied electric displacement D1

2 ¼ D0 are shown in Figs. 6–8 (symbols),

respectively. Again the numerical data are well agreed with the analytical results (solid lines) of Sosa (1991)

and Deng and Wang (2002). To achieve the same accuracy, 960 eight-node ordinary parametric elements



Fig. 6. Variation of Dh with h on the circular boundary under remote electrical loading.

Fig. 7. Variation of rh with h on the circular boundary under remote electrical loading.

Fig. 8. Variations of Er and Eh with h on the circular boundary under remote electrical loading.
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are needed to model a quarter of the plates (Deng and Wang, 2002). It is obvious that the computational
efficiency is high for the proposed finite element for this case.

Example 3. Consider the case of finite plates with a central hole under remote mechanical loading,

r1
2 ¼ r0 ¼ 1 MPa. Set a ¼ 1 mm and vary W . The material is PZT-4 and the parameters are listed in Table

2 (Sze et al., 2001). The results obtained by using one special element are shown in Table 3 with various



Table 2

Material parameters of PZT-4 (Sze et al., 2001)

c11 (GPa) c22 (GPa) c33 (GPa) c44 (GPa) c55 (GPa) c66 (Gpa) c12 (GPa) c13 (GPa) c23 (GPa)

139 139 113 25.6 25.6 30.6 77.8 74.3 74.3

e15 C
m2

" #
e24 ð C

m2Þ e31 C
m2

" #
e32 ð C

m2Þ e33
pC

vm

" #
e11

pC

vm

" #
e22

pC

vm

" #
e33

pC

vm

" #
13.44 13.44 )6.98 )6.98 13.84 6000 6000 5470

Table 3

Comparisons of the present data with results of conventional finite elements

W =a Method

(element no.)

rða; 0Þ=r0 Relative error (%) uðw; 0Þ Relative error (%)

ANSYS (1280) 2.7464 2.68 )1.8234· 10�10 0.406

60 Present (1) 2.6728 )1.8308· 10�10

Analytical 2.6712

20 ANSYS (1056) 2.7631 2.77 )6.2070· 10�11 0.161

Present (1) 2.6865 )6.2170· 10�11

16 ANSYS (1120) 2.7883 3.34 )5.0331· 10�11 0.227

Present (1) 2.6952 )5.0445· 10�11

12 ANSYS (1024) 2.7962 2.93 )3.8843· 10�11 0.402

Present (1) 2.7142 )3.8999· 10�11

8 ANSYS (1140) 2.8533 2.94 )2.8092· 10�11 0.783

Present (1) 2.7694 )2.8312· 10�11

4 ANSYS (1088) 3.1664 2.22 )2.1785· 10�11 0.179

Present (1) 3.0959 )2.1746· 10�11
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W =a ratios. The computed normalized stress is at x ¼ a, y ¼ 0, and the displacement u at x ¼ W , y ¼ 0. The

results by commercial software (ANSYS 7.1, element type: Plane 13) are also listed in the table for com-

parisons. It could be interesting to mention that ANSYS element Plane 13 is for coupled field analysis. The

errors are absolute values by considering the ANSYS’ data as the reference. The element numbers are 1 for

the special element and vary slightly for the conventional elements. Fig. 9 shows a typical mesh for a

quarter plate. From Table 3, it can be seen that the difference for the displacements are smaller than that for

the stress. It is also found that the values of stress at x ¼ a, y ¼ 0 is relatively sensitive to the meshes

generated by the ANSYS. Fig. 10 shows the stress distributions along y ¼ 0 for the case of W =a ¼ 4. It can
be seen that the data obtained by the proposed special element agree well with the FEM results by ANSYS

except at the x ¼ a, y ¼ 0. Thus, one may conclude that the proposed special element also works well for

finite plates.

Example 4. Consider an infinite piezoelectric medium with a center crack of length 2a (b ¼ 0) under

combined mechanical and electrical loadings, namely, r1
2 ¼ r0 and D1

2 ¼ D0. D–P boundary condition is

adopted around the crack surface.

To present the results and compare with analytical solutions, the polar coordinate system with the origin

at the crack tip is introduced. Define k ¼ D1
2 =r

1
2 and r ¼ rh

ffiffiffi
2r

p

r1
2

ffiffi
a

p , where rh is the stress computed at

r ¼ 8� 10�4 mm in h direction. The finite element results for stress r are shown in Fig. 11 (symbols) with

four different values of k (5� 10�8, 10�8, �10�8, 5� 10�8). In the calculations, H ¼ W ¼ 60 mm,

a=H ¼ 0:02, to simulate the infinite piezoelectric medium. Only one eight-node special hybrid finite element

is used in the analysis. It can be seen that all numerical results are well compared with the analytical

solutions (solid lines) of Sosa (1992).



Fig. 10. Comparisons of stress distributions for a finite plate under remote mechanical loading.

Fig. 9. Finite element meshes (ANSYS).
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Example 5. To investigate the performance of the special element to be used with other conventional

elements or special element itself, a finite element mesh (11 · 11) shown in Fig. 12 is used to obtain the

solution of the problem in Example 2. There are total 121 elements. Three cases are considered: Case 1. All

are the same size special elements; Case 2. All are the eight-node conventional hybrid elements except the

center one (special element) with same dimensions; Case 3. Top three rows (total 33 elements) and bottom

three rows (total 33 elements) are eight-node conventional isoparametric elements and others are special

elements with same dimensions. The normalize stress distributions in h direction are shown in Fig. 13. As

compared with the Sosa’s analytical results, it is found that reduced the size of the special element (Case 1)



Fig. 11. Stress distributions around the crack tip under combined loadings (k ¼ D1
2 =r1

2 ).

Fig. 12. Sketch of the finite element mesh.
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does not degrade the performance of the element. In other words, finer meshes can be achieved by using
more special elements if it is necessary. It is also seen that the performance of the special element with

hybrid elements (Case 2) and the combination of special elements with conventional elements (Case 3) can

also yield similar accurate results with finer meshes. It should be pointed out that the proposed special

element works well with larger W =a ratios, while the conventional elements work well with smaller size.

When the crack is not small compared with the rest of the structure, more nodes are needed for the special

element to be connected with the conventional elements if it is required. This could be achieved either by

introducing more terms in the series expression or by using more special elements (Case 1) then eliminate

the inner nodes to compose a more nodes super element.



Fig. 13. Comparisons of rh obtained by nine-element model with analytical data.
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Example 6. Consider finite plates with a central hole under combined mechanical and electrical loadings.

Outside dimensions of the plate are the same as considered in Example 3 and W =a ¼ 4, while b=a varies
from 1 to 0.0001. The reduced material constants in Eq. (33) are used in the analyses. Define k ¼ D1

2 =r
1
2 ,

Ks ¼ rh=r1
2 , Kd ¼ Dh � 1010=r1

2 , and Ket ¼ Eh � 102=r1
2 , the loading ratios, the concentration factors of

tangential stress rh, electrical displacement Dh, and electric field Eh at x ¼ a, y ¼ 0, respectively. The double

logarithm plots, Figs. 14–16, show the variations of these three factors with b=a ratios, where series 1–3

correspond to the loading factor k taking the values of 0, 2 · 10�8, )2 · 10�8. It is interesting to see that

the variations are fairly linear except for the stress concentration factor when loading k < 0. The sign of the

electrical loading does not affect the linear relationships for the two electrical quantities, but does affects the

linear relationships for the stress concentration factor a lot. The reason may be found in Figs. 17 and 18.
Figs. 17 and 18 show the variation of Ks and Kd along the hole boundary when b=a ¼ 0:5, where series 1–5
correspond to the loading factor k taking the values of 4 · 10�8, 2 · 10�8, 0, )2 · 10�8, )4 · 10�8. It can be

seen from Fig. 17 that the maximum values of Ks are no longer at x ¼ a, y ¼ 0 but occurred at other places

when k < 0, and Ks at x ¼ a, y ¼ 0 may be negative even for a tensile mechanical loadings. Thus, damage
Fig. 14. Double logarithm plot of stress with hole size under combined loadings.
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Fig. 15. Double logarithm plot of electric displacement with hole size under combined loadings.

Fig. 16. Double logarithm plot of electric field with hole size under combined loadings.
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Fig. 17. Stress distribution around the hole under combined loadings.
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may occur at places along the hole boundary otherthan at x ¼ a, y ¼ 0 under combined mechanical and

electrical loadings. This may be the reason why the linear relationship does not hold in Fig. 14. It can be

also seen from Fig. 18 that the sign of the loading factor does not alter the distribution of the electric

quantities along the hole boundary if absolute values are considered. Thus, the linear relationship on the

double logarithm plot (Figs. 15 and 16) holds for the electric quantities.
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6. Conclusions

Special element containing an elliptical hole is developed for stress and electric field analysis of piezo-

electric plates with defects. Numerical examples are performed to demonstrate the efficiency and accuracy

of the developed element. It is observed that accurate results could be obtained around the hole in infinite

and finite piezoelectric plates. For finite plates containing an elliptical hole under combined mechanical and

electrical loadings, it is found that the relationship between the logarithm concentration factor of tangential
stress, electrical displacement, and electrical field at x ¼ a, y ¼ 0 and logarithm b=a ratios is fairly linear for

combined loads with positive electrical loading. Based on the results reported herein, one may conclude that

the special element developed herein could be used as a super-element to reduce the finite element modeling

effort in the analysis of the behavior of piezoelectric mediums with defects. It needs further investigation on

the formulations and behaviors of the special element to deal with other electrical boundary conditions

along the elliptical hole boundary or with inclusions.
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