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Abstract

A method is presented to formulate a novel hybrid finite element to obtain accurate distributions of mechanical and
electrical quantities around a hole in plane piezoelectric mediums. The complex variable method is used in conjunction
with Reissner’s variational principle to formulate a hybrid special element with an elliptical hole. Detailed derivations
are given and numerical examples are performed to demonstrate the accuracy and efficiency of the novel special ele-
ment. Accurate results around the hole boundary are obtained for infinite and finite piezoelectric medium by using
proposed special element.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

PZT materials are widely used as sensors/actuators in smart structures due to their fast response and low
energy consumption. There are a lot of articles dealing with the damages (cracks) as well as inclusions of
PZT material itself by using analytical approaches (See, for example, a review paper by Chen and Yu, 1999;
papers by Sosa, 1991, 1992; Chung and Ting, 1996; Lu and Williams, 1998; Deng and Wang, 2002). As is
well known that analytical solutions can be obtained only for the simple cases, therefore, numerical
methods, such as the finite element method, boundary element method, and/or the coupled FEM-BEM,
should be resorted for obtaining solutions in general complicated cases. Details on the modeling of pie-
zoelectric materials and smart structures by conventional finite elements and boundary element method
may be referred, for example, papers by Benjeddou (2000), Lu and Maharenholtz (1994), and Denda and
Lua (1999).

*Corresponding author. Tel.: +86-2584-893466; fax: +86-2584-891488.
E-mail address: wangx@nuaa.edu.cn (X. Wang).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.06.012


mail to: wangx@nuaa.edu.cn

7112 X. Wang et al. | International Journal of Solids and Structures 41 (2004) 7111-7128

It is also well known, however, that it is costly to model a crack or hole by using ordinary finite elements.
Special elements employing hybrid formulations have been succeeded for analyzing crack problems in plane
elasticity (Tong et al., 1977; Zienkiewicz and Taylor, 2000), laminated plates with an elliptical hole (Chen,
1994; Zhan et al., 2003), and problems of cracks at bimaterial interfaces (Lee and Gao, 1995; Sze and
Wang, 2000; Chen et al., 2001). It is demonstrated that hybrid finite elements have the advantages of high
accuracy for hole and crack problems. Recently, the finite element method for ordinary materials (Sze and
Wang, 2000) has been extended to piezoelectric materials for computing edge singularities (Sze et al., 2001).

In this paper, a special hybrid finite element with an elliptical hole is developed herein based on the
Reissner’s variational principle by EerNisse (1983). Complex variable method is used to obtain the
approximate solutions of the stresses, displacements, and electric displacements within the element domain.
In other words, the assumed stresses, displacements, and electric displacements for the special hybrid
element satisfy the governing differential equations and compatibility equations in advance. In this way,
highly efficient novel special elements can be formulated to model the piezoelectric medium with a hole or
crack. It should be mentioned the more general variational principle of piezoelectricity with six kinds of
independent variables given by Lu and Maharenholtz (1994) could be used for developing various special
finite or boundary elements.

Numerical examples with known analytical solutions by Sosa (1991) are performed to demonstrate the
accuracy and efficiency of the novel special elements. Accurate results around the hole boundary are ob-
tained for infinite and finite piezoelectric mediums by using only one special element. The behaviors of finite
plates with an elliptical hole with semi-axes of @ and b under combined mechanical and electrical loadings
are then studied. It is found that the relationship between the logarithm concentration factors of tangential
stress, electrical displacement, and electrical field at notch tip and logarithm b/a ratio is fairly linear under
certain loading cases.

2. Basic formulations

Using the complex variable formulation as described by Sosa (1991), the stress functions U (x, y), and the
induction function ¥(x,y) for piezoelectric media with defects in two dimensions can be expressed by using
the following two complex functions, namely,

d(Jk (Zk)

U(x,y) =2Re
2

k

(la,b)

3 3
Uzi),  P(x,y) =2Re)
=1 k=1

where the symbol Re represents the real part of a complex function, 4, and the complex variable z; are
defined as

Z =X+ ey (2a)
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The complex variable y, (k =1, 2, 3) is the roots of the following equation:

a1 01118 + (a1162 + 2adyy + azdiy + b3, + by + 2baibis) it + (andiy + 2a1262 + az3én
+ 2b31by + 2b22b13),u2 + (andyn + bﬁz) =0 (3)
For transversely isotropic (x;x, plane) piezoelectric materials with poling direction in the x; direction and

for plane strain condition (&5 = &3, = &1 = E; = 0), the remaining notations appeared in Egs. (2b) and (3)
can be found in the work of Sosa (1991).
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Consider the case of plane strain. Now let the y be the poling direction and introduce the following
notations, @, @, (k = 1,2,3), namely,

i g,

&.(7) = U = Lk -
W(Zi) = Uy & YT

(4a,b)

The stress field, displacement field and electrical field can be obtained once the functions in Eq. (4a,b) are
known.

Consider a piezoelectric plate containing an elliptical hole with semi-axes of @ and b. To apply the hole-
boundary conditions conveniently, conformal transformations proposed by Lekhnitskii (1981), Eq. (5), are
performed to map the exterior of three ellipses contained in the Z; plane onto the exterior of the unit circle
located in the ¢; planes,

a—+i

a—1iub iw:b )
Z; = ! éj"_ 2j éjl (./:17273) (5)

/ 2

The inverse mapping i_,— is given by

Z +./Z —iwb)(a+iwb)
a—lujb

(=123) (6)
In terms of the variable &, the stress field, displacement field and electrical field can be written as

3 3
0w =2Re > W2$(E)/Z(E); 0y =2Re Y $L(E)Z0(E);
k=1 k=1
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where

dZy _a—iyb a+ 1ukb
dé, 2

All other symbols appeared in Eq. (7) can be found in the work of Sosa (1991).

Z(&) = &’ (®)
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For the D-P condition (traction-free and charge-free) along the cavity boundary, one has

3 3 3
Red (&) =0, Red wp(&) =0, Red Agy(xix) =0 (9a—c)
k=1 =1 k=1
or in matrix notation:
1 1 1 @1 1 1 1 b,
By My g Gy p == 1 2 K o (10)
)»1 )\,2 ),3 (,{)3 )vl }~2 /13 4)3
Eq. (10) can be written as
(1)1 En En Ep lon
¢y 0= | B2 Exn Ex o (11)
foR Ey Eyn Ex N

Generally speaking, it is impossible to find a closed form solutions for ¢,(&,) for arbitrary boundary
conditions. A finite series formulation is commonly adopted, namely,

M
= > 48, h(&) = Z Bi&, (&) = Z e (12a-c)
j=N 7

j=—N

where 4;, B;, C; are complex coefficients to be determined by the boundary conditions.

Without loss of the generality, set M equal N. Note that terms with j = 0 in Eq. (12a—c) contribute no
stresses and electric displacements and thus are discarded. After satisfying the boundary conditions, Eq.
(9a—c), on the elliptical hole boundary and note the fact of that Ef( = f,:j on the unit circle, the total number
of independent coefficients is reduced to half. In other words, the total number of independent coefficients
in Eq. (12) is now 6N.

3. Reissner’s variational principle

Following EerNisse (1983), Reissner’s Variational Functional can be expressed as
H /{u,jau S Spu00k — Uifi + @ Di + 5 B DD; + g, — gkijaijDk} dv+/ (&
Su

“i)o'if”.fd5+/ (@ — @)Djn;ds — “iids+/ ®qsds (13)
S Ss S

where sﬁk,, ﬁfj, gu; are the compliance tensor of the material measured at zero electric displacement, the
dielectric impermeability tensor measured at zero stress, and the piezoelectric tensor; u;, 0;;, ¢, D; are the
displacement vector, stress tensor, the electric potential, and electric displacement vector, f;, g, are the body
force vector and the body charge vector, respectively. The quantities with symbol * represent the known
quantity. And S, S,, S,, S, represents the boundary with given displacement, traction forces, electric
potential, and the electric displacement, respectively.

The special element matrices are to be formulated from the element’s functional []; by assuming u;, o;j,
¢, D; in the element domain and #;, ¢ along the element outer boundary. Theoretically all these quantities
can be assumed independently, however, they are to be chosen that the governing differential equations and
compatibility equations be satisfied in advance. Thus, the functional defined in the element domain is
simplified as



X. Wang et al. | International Journal of Solids and Structures 41 (2004) 7111-7128 7115

1 1 ~
HZ:/ itiai/n/ds—z/ u,-al:,-n_,-ds—i—/ (Z)D,n_jds—i/ (pD_,njds—/ u,-T,-dS—i—/ @q,ds (14)
Se Se Se Se S5 So

Note that the components of body force vector and the body charge vector f;, g, are assumed zero in
writing Eq. (14) and Sg is the element boundary. The last two integrals on the right-hand side of Eq. (14)
should be dropped if the element is surrounded by special or conventional elements, the case considered in
the following derivations. The quantities with symbol ~ represent the quantities only on the element outer
boundary, since the D-P condition along the hole boundary has been satisfied in advance. It should be
emphasized that only boundary integrals are involved in Eq. (14), different from the sub-region mixed
functional (Zhao and Shan, 1991). Detail discussions may be referred to the book written by Zienkiewicz
and Taylor (2000).
For convenience, introduce following notations:

Uy
Oy ﬁ 1 Uy
Oy u L B> ?y
6=10yp, U=S0v >, t=¢t > Pp=< - 5 8= . (15a—e)
Dx Y q : Up
D, B Um
(pm

where 7z is the number of unknowns, and m is the number of nodal points of the special element. Assuming
u;, 0, @, D; in the element domain yields

=SB, u=Up (16a,b)

where elements containing in matrices S and U are interpolation functions to be defined in Section 4. Then,
one can evaluate t at the element boundary, namely,

t = No = NSp (17)

Let n,, n, be the components of the unit normal to the element external boundary, thus matrix N in Eq. (17)
can be expressed as

n, 0 n, 0 O
N=|(0 n n 0 0 (18)
0 0 0 n n

The external boundary displacement vector and electric potential, u, is independently assumed in terms
of the nodal displacements and electric potentials, namely,

i=L3 (19)

where elements of matrix L are the interpolation functions defined only along the element external
boundary. To be jointed with special or conventional elements, the interpolation functions for the special
element developed herein are chosen to be displacement shape functions of the adjacent conventional
elements.

Neglect the body forces, body charges, and the boundary loadings, the functional for the special element
can be symbolically written as

IT=5( [ osmas) s - 587( [ ovs)"ues)p =765 - 5p7mp 20)

Se Se
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where
1
G= [ (NS)'Lds, H= 3 / [(NS)'U + UT(NS)]ds (21a,b)
S S
Since P and & are assumed independently, set O H;f /0B = 0 yields
Gs-Hp=0 (22)
or
Bp=H'Gs (23)
Substituting Eq. (23) into Eq. (20)
£ | N l .t
HR_ZSGH G = 58'K? (24)
N E Tyl
K8 =0]],/08 = (G'H'G)s (25)

Thus, the stiffness matrix for the special element is obtained. The K in Eq. (25) could be viewed as a
“standard stiffness matrix” (Zienkiewicz and Taylor, 2000). As was demonstrated by Chen (1994), the
special element developed in this way could be conveniently used to join other variationally compatible
elements in the stress analyses of laminated plates, such as the conventional finite elements or the special
elements themselves.

4. Eight-node special hybrid finite element

As an example, an eight-node special hybrid finite element, schematically shown in Fig. 1, is considered.
Elements with different nodes (e.g. 4, 16, or more nodes) could be formulated in a similar way without any
difficulty (Lee and Gao, 1995). An elliptical hole is located at the element center. Each node has three
degrees of freedom (DOFs). For example, at node 1, the three DOFs are uy, vy, ¢,. The poling direction is
assumed in the y-direction. The lengths of the semi-axes of the hole are @ and b. The side lengths of the
element are denoted by L3, Lss, Ls;, L1, respectively.

For developing the special element, Eqs. (11) and (12) are used to determine the stress and electric
displacement within the element, namely, to obtain Eq. (16a). Set N = 4, then P is

ﬁT = {Axl>Ayl7 s ;Ax47Ay47Bx1;Byl7 s 7Bx47By4a Cxla Cy17 SRR Cx4; Cy4} (26)

Fig. 1. An eight-node element with a center elliptical hole.
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where elements of vector f are parts of the complex coefficients in Eq. (12) and defined by
Ak = Axk + iAyk, B, =By + iByk, Ck = ka + lek (k = 1,2, 3,4, 1=V —1) (273*C)

It can be seen that there are totally 24 unknowns (» = 24) in the p matrix and the number of unknowns is
equal to the number of the degrees of freedoms of the element. It should be pointed out that n could be set
to other numbers greater than 3m — 3 (3m is the total number of degrees of freedom of the element),
however, it is recommended that the number of unknowns be equal to the number of the degrees of
freedoms of the special element. Experience shows that a four-node special element with N = 2 could yield
similar accurate results for the infinite plate problems considered later. Since the accuracy of the special
element depends largely on how accurate of the displacements and electric potential on the special element
boundaries, either more nodes (need more terms in Eq. (12)) or finer meshes (achieved by more special
elements) are required for the special element to be used with other elements.

Substituting Eq. (12a—c) into Eq. (15a—¢) yields the matrix S appeared in Eq. (16a) and matrix U in Eq.
(16b). The traction vector t in Eq. (15¢) can then be computed by using Eqs. (17) and (18). Since u is as-
sumed along the element outer boundary only, interpolation along the element sides could be linear or
quadratic depending on the type of displacement shape functions of the adjacent elements (Lee and Gao,
1995). The shape functions are to be chosen in parabolic forms in the following derivations. For example,
along element side 1-3, matrix L in Eq. (19) is defined as

NN 0 0 N 0 0 N 0 0 0...0
o ~N~n 0 0 N 0 0 N 0 0...0

L=10 0o m 0 0 M 0 0 N 0.0 (28a)
15
Along element side 3-5, matrix L in Eq. (19) is defined as
.0 NN O 0O N, O 0 Ny 0 0 0...0
000N10 O N, 0 0 Ny 0 0...0 (28b)
0000N100N200N30...0
9
Along element side 5-7, matrix L in Eq. (19) is defined as
0 Nl O N, 0O 0 Ny 0O 0 0...0
N1 O 0 N O O N O 0...0
NN O 0O N O 0 Ny 0...0 (28¢)
\,_/ \3,_/
Along element side 7-1, matrix L in Eq. (19) is defined as
0..0 N, O O N, O O
0..0 0 N O O N O
N3 0..0 0 0 N O 0 N (28d)
——
15
where
N=(s-12s-1)
N, =4s(1—s) s€]0,1] (29)
N =s(2s—1)

where s = §/L;, S is the arc variable along the element side, and L;; is the length of the element side ij.
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To obtain the roots y,, Eq. (3) is rewritten as

1+ [(a11022 + 2a12011 + a33011 + b§1 + b%3 + 2b21b13)/(a11511)],u4 + [(a22011 + 21202 + az302
+ 2by1by + 217221713)/(6111511)]#2 + (@202 + bgz)/(anén) =0 (30)

or
6 4 2 _
WHep +op +c=0 (31)

Then y, can be conveniently obtained by solving the eigenvalues of the following matrix P.

0 —C1 0 —C 0 —C3
1 0 0 0 0 0
O 1 0 0 0 0
P=10 0 1 0 o0 o (32)
0 0 0 1 0 0
0 0 0 0 1 0

Thus, the stiffness matrix for the special element can be obtained by using Eq. (25).

5. Numerical examples

A computer program is written and several examples with known solutions are studied to test the
proposed element. Gaussian quadrature is adopted to conduct the boundary integrations. The minimum
number of Gaussian quadrature points is three. The material is assumed a PZT-4 ceramic. Reduced
material constants provided by Sosa (1991) are

aj; = 8205 x 1072 m?*/N;  ap; = —3.144 x 1072 m?/N;

an =17.495x 1072 m?/N; a3 =19.3 x 1072 m?/N;

by = —16.12 x 107 m*/C; by =23.96 x 107° m*/C; b3 =39.4 x 107° m?/C;
o1 = 7.66 x 107 V2/N; 85 =9.82 x 107 V?/N

(33)

It should be pointed out that one should be very careful in programming, since the order of material
constants above are quite different which may result numerical instability or inaccuracy. The difficulty can
easily be overcome, however, by adopting the modified units in the analysis (Sze et al., 2001). Attention
should also be paid the plus—minus sign * in Eq. (6) during numerical calculations. To ensure the accuracy,
analytical data of Sosa (1991) in Figs. 3-9 have been recalculated.

Example 1. Consider the elliptical cavity shown in Fig. 2 with boundary conditions given by Eq. (34),
namely,

O'l'jnj = 0, D[}’l,‘ = 0 (l,] = 1,2) (34)

For comparisons, far field mechanical loading in the x direction, different from the one shown in Fig. 2,
is considered, namely, ¢2° = 6. And the maximum stress at y = b is to be determined by the special finite
element developed herein.

In the finite analysis, one special element proposed is used. For the infinite piezoelectric medium, set
H=W=50mm, a/H =0.02ifa > borb/H = 0.02 if a <b. The numerical results are listed in Table 1 for
several a/b ratios. The results in Table 1 under the title “Elastic” is obtained by neglecting the terms
containing the electrical variable. In other words, a purely anisotropic problem is solved. The data by the
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Fig. 2. Elliptical hole in an infinite or finite piezoelectric medium.

Table 1
Values of 6., /0y atx =0,y =5
a/b Elastic Electroelastic
Theory (Sosa, 1991) Present (FEM) % Difference Theory (Sosa, 1991) Present % Difference
3 1.6222 1.623 0.06 1.743 1.742 —-0.06
1 2.870 2.870 0.00 3.230 3.229 -0.03
1/3 6.610 6.610 0.00 7.700 7.682 -0.23
1/10 19.7 19.70 0.00 23.26 23.27 +0.03

finite element method are obtained by using the eight-node special hybrid stress element proposed by Zhan
et al. (2003), a special case of the current element by taking out all electrical quantities. It can be seen that
numerical results are compared very well with the analytical solutions for both “Elastic”” and “Electro-
elastic”” cases. The efficiency of the proposed special element is demonstrated. It can be seen again by
comparing the data listed in Table 1 that the differences between two theories are by no means negligible,
pointed out earlier by Sosa (1991), thus the Electro-elastic theory should be used.

Example 2. Consider next an infinite piezoelectric medium with a circular hole (radius of @) under two
different loadings, namely, either 65° = oy or D5° = Dy. The boundary conditions around the circular hole
(r = a) are 6, = 1,y = D, = 0 if polar coordinates are used.

The finite element results for the stress oy, electric displacement Dy, electric field E, and E; normalized
with respect to the far field applied stress ¢5° = o are shown in Figs. 3-5 (symbols), respectively. In the
calculations, H = W = 50 mm, a/H = 0.02, to simulate the infinite piezoelectric medium. Only one eight-
node special hybrid finite element is used in the analysis. To obtain the same accurate results for this
problem, Deng and Wang (2002) used 1120 eight-node ordinary isoparametric elements to model a quarter
of the plate. All numerical results are well compared with the analytical solutions (solid lines) given by Sosa
(1991). The maximum values of gy occur at 6 = 0°, 180°, and the maximum values of D, occur at § = 65°,
115°, agrees well with Sosa’s theoretical results 6§ = 65°, 114°.
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Fig. 3. Variation of Dy with 6 on the circular boundary under remote mechanical loading.
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Fig. 4. Variation of ¢y with 6 on the circular boundary under remote mechanical loading.

Elec.field/100
e

B & Present

— Analytical

Polar angle (rad)

Fig. 5. Variations of E, and E, with 6 on the circular boundary under remote mechanical loading.

The finite element results for the stress gy, electric displacement Dy, electric field E, and Ey normalized
with respect to the far field applied electric displacement D3° = D, are shown in Figs. 6-8 (symbols),
respectively. Again the numerical data are well agreed with the analytical results (solid lines) of Sosa (1991)
and Deng and Wang (2002). To achieve the same accuracy, 960 eight-node ordinary parametric elements



X. Wang et al. | International Journal of Solids and Structures 41 (2004) 7111-7128 7121

2
1 De/D0
o
2]
ko] 0 1 1 ! 1 1 1
J
<@ ] 0.5 1 1.5 2 2.5 3
w
-1F
@ Present
—— Analytical
.2 4

Polar angle (rad)

Fig. 6. Variation of Dy with 6 on the circular boundary under remote electrical loading.
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Fig. 7. Variation of ¢y with 0 on the circular boundary under remote electrical loading.
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Fig. 8. Variations of E, and E, with 0 on the circular boundary under remote electrical loading.

are needed to model a quarter of the plates (Deng and Wang, 2002). It is obvious that the computational
efficiency is high for the proposed finite element for this case.

Example 3. Consider the case of finite plates with a central hole under remote mechanical loading,
05° = 09 = 1 MPa. Set ¢ = 1 mm and vary W. The material is PZT-4 and the parameters are listed in Table
2 (Sze et al., 2001). The results obtained by using one special element are shown in Table 3 with various
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Table 2
Material parameters of PZT-4 (Sze et al., 2001)

cii (GPa) ¢ (GPa) ¢33 (GPa) cay (GPa) ¢ss (GPa) ces (Gpa) ciz (GPa) c13 (GPa) 3 (GPa)

139 139 113 25.6 25.6 30.6 77.8 74.3 74.3

eis () e () en () en () ex (5) en (55) e () e (55)

13.44 13.44 —-6.98 -6.98 13.84 6000 6000 5470

Table 3
Comparisons of the present data with results of conventional finite elements

W/a Method a(a,0)/ay Relative error (%)  u(w,0) Relative error (%)
(element no.)
ANSYS (1280) 2.7464 2.68 -1.8234x 10710 0.406

60 Present (1) 2.6728 —-1.8308x 10710
Analytical 2.6712

20 ANSYS (1056) 2.7631 2.77 -6.2070x 10~ 0.161
Present (1) 2.6865 -6.2170x 101

16 ANSYS (1120) 2.7883 3.34 -5.0331x 10! 0.227
Present (1) 2.6952 -5.0445%x 10~

12 ANSYS (1024) 2.7962 2.93 -3.8843x 10! 0.402
Present (1) 2.7142 -3.8999x 10~

8 ANSYS (1140) 2.8533 2.94 -2.8092x 10~ 0.783
Present (1) 2.7694 -2.8312x 10~

4 ANSYS (1088) 3.1664 2.22 -2.1785%x 107" 0.179
Present (1) 3.0959 -2.1746x 10~

W /a ratios. The computed normalized stress is at x = a, y = 0, and the displacement u atx = W, y = 0. The
results by commercial software (ANSYS 7.1, element type: Plane 13) are also listed in the table for com-
parisons. It could be interesting to mention that ANSYS element Plane 13 is for coupled field analysis. The
errors are absolute values by considering the ANSYS’ data as the reference. The element numbers are 1 for
the special element and vary slightly for the conventional elements. Fig. 9 shows a typical mesh for a
quarter plate. From Table 3, it can be seen that the difference for the displacements are smaller than that for
the stress. It is also found that the values of stress at x = a, y = 0 is relatively sensitive to the meshes
generated by the ANSYS. Fig. 10 shows the stress distributions along y = 0 for the case of W/a = 4. It can
be seen that the data obtained by the proposed special element agree well with the FEM results by ANSYS
except at the x = a, y = 0. Thus, one may conclude that the proposed special element also works well for
finite plates.

Example 4. Consider an infinite piezoelectric medium with a center crack of length 2a (b = 0) under
combined mechanical and electrical loadings, namely, ¢5° = 6y and D5° = D,. D-P boundary condition is
adopted around the crack surface.

To present the results and compare with analytical solutions, the polar coordinate system with the origin

at the crack tip is introduced. Define &k = D5°/63° and ¢ = Z&@, where ¢y is the stress computed at
2

r =8 x 107* mm in 0 direction. The finite element results for stfess ¢ are shown in Fig. 11 (symbols) with
four different values of k¥ (5 x 1078, 1078, —107%, 5x 107%). In the calculations, H = W = 60 mm,
a/H = 0.02, to simulate the infinite piezoelectric medium. Only one eight-node special hybrid finite element
is used in the analysis. It can be seen that all numerical results are well compared with the analytical
solutions (solid lines) of Sosa (1992).
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Fig. 9. Finite element meshes (ANSYS).

Stress

Fig. 10. Comparisons of stress distributions for a finite plate under remote mechanical loading.

Example 5. To investigate the performance of the special element to be used with other conventional
elements or special element itself, a finite element mesh (11x11) shown in Fig. 12 is used to obtain the
solution of the problem in Example 2. There are total 121 elements. Three cases are considered: Case 1. All
are the same size special elements; Case 2. All are the eight-node conventional hybrid elements except the
center one (special element) with same dimensions; Case 3. Top three rows (total 33 elements) and bottom
three rows (total 33 elements) are eight-node conventional isoparametric elements and others are special
elements with same dimensions. The normalize stress distributions in 0 direction are shown in Fig. 13. As
compared with the Sosa’s analytical results, it is found that reduced the size of the special element (Case 1)
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Fig. 11. Stress distributions around the crack tip under combined loadings (k = DY /65°).

Fig. 12. Sketch of the finite element mesh.

does not degrade the performance of the element. In other words, finer meshes can be achieved by using
more special elements if it is necessary. It is also seen that the performance of the special element with
hybrid elements (Case 2) and the combination of special elements with conventional elements (Case 3) can
also yield similar accurate results with finer meshes. It should be pointed out that the proposed special
element works well with larger W /a ratios, while the conventional elements work well with smaller size.
When the crack is not small compared with the rest of the structure, more nodes are needed for the special
element to be connected with the conventional elements if it is required. This could be achieved either by
introducing more terms in the series expression or by using more special elements (Case 1) then eliminate
the inner nodes to compose a more nodes super element.
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Fig. 13. Comparisons of gy obtained by nine-element model with analytical data.

Example 6. Consider finite plates with a central hole under combined mechanical and electrical loadings.
Outside dimensions of the plate are the same as considered in Example 3 and W /a = 4, while b/a varies
from 1 to 0.0001. The reduced material constants in Eq. (33) are used in the analyses. Define k = D3°/g5°,
K, = 09/05°, Kg = Dy x 10" /65, and K. = Ey x 10?/05°, the loading ratios, the concentration factors of
tangential stress oy, electrical displacement Dy, and electric field Ey at x = a, y = 0, respectively. The double
logarithm plots, Figs. 14-16, show the variations of these three factors with b/a ratios, where series 1-3
correspond to the loading factor k taking the values of 0, 2x 1078, —2x 1078, It is interesting to see that
the variations are fairly linear except for the stress concentration factor when loading £ < 0. The sign of the
electrical loading does not affect the linear relationships for the two electrical quantities, but does affects the
linear relationships for the stress concentration factor a lot. The reason may be found in Figs. 17 and 18.
Figs. 17 and 18 show the variation of K; and Ky along the hole boundary when b/a = 0.5, where series 1-5
correspond to the loading factor k taking the values of 4x 1078, 2x 1078, 0, —=2x 1078, —4x 1073, It can be
seen from Fig. 17 that the maximum values of K are no longer at x = a, y = 0 but occurred at other places
when k£ < 0, and K; at x = a, y = 0 may be negative even for a tensile mechanical loadings. Thus, damage

5
4 Series | 4
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%3 Series3 A
X
{2
[e)
-2
1
0 1 1 1 A r_%
-5 -4 -3 ) -1 0

Log(b/a)

Fig. 14. Double logarithm plot of stress with hole size under combined loadings.



7126 X. Wang et al. | International Journal of Solids and Structures 41 (2004) 7111-7128

7
6 Series 1 ¢
Series2 W

5 Series3 A
g4
23
)

2

1

0 ) ) ) )

-5 -4 -3 -2 -1 0

Log(b/a)

Fig. 15. Double logarithm plot of electric displacement with hole size under combined loadings.
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Fig. 16. Double logarithm plot of electric field with hole size under combined loadings.
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Fig. 17. Stress distribution around the hole under combined loadings.

may occur at places along the hole boundary otherthan at x = a, y = 0 under combined mechanical and
electrical loadings. This may be the reason why the linear relationship does not hold in Fig. 14. It can be
also seen from Fig. 18 that the sign of the loading factor does not alter the distribution of the electric
quantities along the hole boundary if absolute values are considered. Thus, the linear relationship on the
double logarithm plot (Figs. 15 and 16) holds for the electric quantities.
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Fig. 18. Electric displacement distribution around the hole under combined loadings.

6. Conclusions

Special element containing an elliptical hole is developed for stress and electric field analysis of piezo-
electric plates with defects. Numerical examples are performed to demonstrate the efficiency and accuracy
of the developed element. It is observed that accurate results could be obtained around the hole in infinite
and finite piezoelectric plates. For finite plates containing an elliptical hole under combined mechanical and
electrical loadings, it is found that the relationship between the logarithm concentration factor of tangential
stress, electrical displacement, and electrical field at x = a, y = 0 and logarithm b/a ratios is fairly linear for
combined loads with positive electrical loading. Based on the results reported herein, one may conclude that
the special element developed herein could be used as a super-element to reduce the finite element modeling
effort in the analysis of the behavior of piezoelectric mediums with defects. It needs further investigation on
the formulations and behaviors of the special element to deal with other electrical boundary conditions
along the elliptical hole boundary or with inclusions.

Acknowledgements

The research is partially supported by National Natural Science Foundation of China (10072026,
50135030), China Ph.D. Foundation (20020287003). The reviewers’ critical comments and information are
sincerely appreciated.

References

Benjeddou, A., 2000. Advances in piezoelectric finite element modeling of adaptive structural elements: a survey. Comput. & Struct. 76,
347-363.

Chen, H.C. 1994. A special finite element with an elliptical hole for laminated structures, AIAA-94-1337-CP, pp. 253-263.

Chen, M.C., Sze, K.Y., Wang, H.T., 2001. Analysis of singular stresses in bonded bimaterial wedges by computed eigensolutions and
hybrid element method. Commun. Numer. Methods Eng. 17, 495-507.



7128 X. Wang et al. | International Journal of Solids and Structures 41 (2004) 7111-7128

Chen, Z., Yu, S., 1999. Current research on the damage and fracture mechanics of piezoelectric materials. Adv. Mech. 29 (2), 187-196,
in Chinese.

Chung, M.Y., Ting, T.C.T., 1996. Piezoelectric solid with an elliptic inclusion or hole. Int. J. Solids Struct. 33, 3343-3361.

Denda, M., Lua, J., 1999. Development of the boundary element method for 2D piezoelectricity. Compos. Part B 30, 699-707.

Deng, Q.L., Wang, Z.Q., 2002. Analysis of piezoelectric materials with an elliptical hole. Acta Mech. Sinica 34 (1), 109-114, in Chinese.

EerNisse, E.P., 1983. Variational method for electroelastic vibration analysis. IEEE Trans. J. Sonics & Ultroson. 14, 59-67.

Lee, J., Gao, H.J., 1995. A hybrid finite element analysis of interface cracks. Int. J. Numer. Methods Eng. 38, 2465-2482.

Lekhnitskii, S.G., 1981. Theory of Elasticity of an Anisotropic Body, English translation. Mir Publishers, Moscow.

Lu, P., Maharenholtz, O., 1994. A variational boundary element formulation for piezoelectricity. Mech. Res. Commun. 21, 605-611.

Lu, P., Williams, F.W., 1998. Green functions of piezoelectric material with an elliptic hole or inclusion. Int. J. Solids Struct. 35, 651—
664.

Sosa, H., 1991. Plane problems in piezoelectric media with defects. Int. J. Solids Struct. 28 (4), 491-505.

Sosa, H., 1992. On the fracture mechanics of piezoelectric solids. Int. J. Solids Struct. 29 (21), 2613-2622.

Sze, K.Y., Wang, H.T., 2000. A simple finite element formulation for computing stress singularities at bimaterial interfaces. Finite
Elem. Anal. & Des. 35, 97-118.

Sze, K.Y., Wang, H.T., Fan, H., 2001. A finite element approach for computing edge singularities in piezoelectric materials. Int. J.
Solids Struct. 38, 9233-9252.

Tong, P., Pian, T.H.H., Lasry, S.J., 1977. A hybrid element approach to crack problems in plane elasticity. Int. J. Numer. Methods
Eng. 11, 377-403.

Zhan, H.P., Wang, X., Zhou, H., 2003. An eight-node hybrid stress element with an elliptical hole for orthotropic materials. Acta
Mech. Solida Sinica 24 (S. Issue), 128-132, in Chinese.

Zhao, J., Shan, H., 1991. Stress analysis around holes in orthotropic plates by the subregion mixed finite element method. Comput. &
Struct. 41, 105-108.

Zienkiewicz, O.C., Taylor, R.L., 2000. The Finite Element Method, fifth ed. McGraw-Hill International Inc.



	A novel hybrid finite element with a hole for analysis of plane piezoelectric medium with defects
	Introduction
	Basic formulations
	Reissner's variational principle
	Eight-node special hybrid finite element
	Numerical examples
	Conclusions
	Acknowledgements
	References


